Journal of Organometallic Chemistry 124 (1977) 59-70
© Elsevier Sequoia Sequoia SA, Lausanne - Printed in The Netherlands

THE CRYSTAL AND MOLECULAR STRUCTURE OF BICYCLO[2 2 1]-HEPT-2-EN-5,6-DINITROSOCOBALT- η^{5}-CYCLOPENTADIENIDE. EVIDENCE FOR A NITROXYL DIRADICAL BIDENTATE LIGAND

GUY EVRARD *, ROBERT THOMAS *, BETTYR DAVIS **, and IVANBERNAL ***
Chemistry Department Brookhalen National Laboratory Upton New York 11973 (US A)
(Received January 29th, 1976)

Summary

An accurate X-ray crystallographic structural study of a metal complex having a nitroxyl diradicai as a bidentate ligand has been carried out Bicyclo[2 21]-hept-2-en-5,6-dinitrosocobalt- η^{5}-cyclopentadienide crystallizes in space group $P \overline{1}$ with $Z 2, a 8245 \pm 0007, b 10285 \pm 0016, c 7888 \pm 0008 \AA$ and $\alpha 59276$ $\pm 0073, \beta 101099 \pm 0053, \gamma 108802 \pm 0067^{\circ}$ Intensities of 1831 independent reflections were used in the refinement of the structure to an $R(F)$ of 46% The boriding of the Co atom to the cyclopentadienyl ligand appears to be a normal pentahapto linkage The lone double bond and the $\mathrm{C}-\mathrm{C}$ single bonds adjacent to the endo hydrogens of the norbornene fragment of the molecule are shorter than have previously been reported for this moiety This study represents the first structural report of NO groups bndging to Co . The $\mathrm{Co}-\mathrm{N}-\mathrm{O}$ angles ($129.4(3)$ and $128.9(3)^{\circ}$) and the NO stretching frequency ($1357 \mathrm{~cm}^{-1}$) of the title compound resemble values found in nitroxyl free radical compounds more closely than values found in bridging NO group compounds

Introduction

In 1971, Brunner and Loskot [1] reported the reactions of olefins with organo cobalt compounds in the presence of NO. In particular, they reported that the reaction of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(\mathrm{CO})_{2}\right]$ with the Diels-Alder adduct of cyclopentadiene and the dimethyl ester of acetylenedicarboxylic acid, in the presence of NO, gives an unusual compound to which they assigned the following chemical com-

[^0]position and structure

$$
\mathrm{R}=\mathrm{COOCH}_{3}
$$
(I)

The existence of bridging NO groups was inferred from the value of the NO stretching frequency ($1357 \mathrm{~cm}^{-1}$) and the endo configuration of the hydrogens $\left(\mathrm{H}_{A}\right)$ at positions 5 and 6 was assigned on the basis of H-NMR arguments Since this molecule is unique in composition and the configurational assignments needed to be verified, we undertook an X-ray diffraction study of the crystal and molecular structure of the substance in the form of the parent compound ($\mathrm{i}, \mathrm{R}=\mathrm{H}$) Our results venfy all compositional, conformational and configurational assignments made by Brunner and Loskot [1]. Furthermore, this is the first study of a μ-nitroso cobalt compound and one of the few studies avaliable of either an ortho-dinitroso organic compound or of a norbornene fragment (vide infra)

Expenmental

A farly well-shaped dark, almost black, single crystal suitable for X-ray diffraction studies was selected from material kindly supplied by Professor Henrı Brunner The crystal was approximately a parallelepiped in shape It was bounded by six faces of the following forms and indices $\{100\},\{001\},(1 \overline{3})$ and ($\overline{1} 3 \overline{1}$). Perpendicular distances from an ongin chosen at the intersection of
 020 mm to the (100), 017 mm to the (001), and 030 mm to the ($\overline{1} 3 \overline{1}$). The volume of the data crystal was $001978 \mathrm{~mm}^{3}$.

Prelıminary Weissenberg and precession X-ray photographs established that the crystal is triclinic. The assumption that it is centrosymmetric, so that the space group is $P \overline{1}$, has been proved correct by the structural analysis. Approximate unit-cell dimensions were refined by least-squares analysis using observed diffractometer data for twenty-four reflections, automatically centered under computer control. The crystal data are summarized in Table 1.

Using graphite monochromatized Mo- K_{α} X-radiation ($\lambda=071069 \AA$), intensity data were collected under computer control using the Brookhaven Multiple Spectrometer Control System [2]. The $\theta-2 \theta$ step-scan technique was used with the scan length determined by the function $\Delta 2 \theta=2.0^{\circ}(1+0.7 \tan \theta)$. The step size was chosen to give approximately 50 points in each scan. Data were cohected out to sin $\hat{\theta} / \mathrm{K}=0.649 \AA^{-5}$ and included measurements of many

TABLE 1
CRYSTAL DATA $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Co} \mathrm{I} \mathbf{w} 27618$ Space Group Pr trichnc

a	8245 ± 0007 A	¢ $59276 \pm 0073^{\circ}$
b	10285 ± 0016	$\beta 101099 \pm 0053$
c	7888 ± 0008	7108802 ± 0067
v	$54401 A^{3} \quad$ z2	
${ }^{\text {d meas }}$	$1690 \mathrm{gms} \mathrm{cm}^{-3}$	
dcalc	$1686 \mathrm{gms} \mathrm{cm}^{-3}$	
μ	$16227 \mathrm{~cm}^{-1}$	
Range of transmission coefficients calculated 073 to 079		

reflections in both hemispheres of reciprocal space The total of 3282 integrated intensity measurements yielded a unique data set of 1831 observed intensities with $I>3 \sigma(I) I$ is the background corrected integrated intensity and $\sigma(I)$ its e.s d based on counting statistics Two standard reflections were measured at regular intervals to monitor the crystal and electronic stability No corrective measures were required by the observed variations

Background corrections were made using a method [3] which separates the peak and background in such a way that $\sigma(I) / I$ is mmimized Lorentz, polarization and absorption corrections were applied to the data Polarization due to the pyroly tic graphite monochromator crystal was neglected The Gaussian integration method [4] with a grid of 512 points was used in the absorption correction calculations, where the crystal shape was represented by the six rational boundary planes descnbed above

Structure solution and refinement

A three-dimensional sharpened Patterson map showed the position of the Co atom in the unit cell Subsequently, all other atoms in the molecule were revealed by Founer and difference Founer maps

The full-matrix least-squares refinement of the structure proceeded in a straightforward manner. $R^{\prime}=\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ was the quantity minımized, where F_{0} and F_{c}, respectively, are the observed and calculated structure ampltudes and $w=1 / \sigma^{2}\left(F_{0}\right)$ is the weight for each reflection. $\sigma\left(F_{0}\right)$ was given by $\sigma\left(F_{0}\right)=\left(\sigma^{2}\left(F_{0}\right)+\left(0075 \mid F_{0}\right)^{2}\right)^{1 / 2}$ with $\sigma^{2}\left(F_{0}\right)$ based only on counting statistics All 1831 observed reflections were included in each refinement cycle in the final cycle, a single scale factor, the atomic positions and the anisotropic thermal parameters for all non-hydrogen atoms were vaned All hydrogen atoms were found in the difference Fourier maps and their contributions w ere included in the least-squares cycles, but their positional and isotropic thermal parameters were not vaned Ultimately the hydrogen atom positions were idealized. The $\mathrm{C}-\mathrm{H}$ distances were set to $0.97 \AA$ and the sotropic temperature factors were set to $44 \AA^{2}$

The final R-factors for the refinement were $R_{1}=\Sigma\left|F_{0}-k F_{\mathrm{c}}\right| / \Sigma\left|F_{0}\right|=46 \%$ and $R_{2}=\left[\Sigma w\left(F_{0}-k F_{c}\right)^{2}\right]^{1 / 2} /\left(\Sigma w F_{0}^{2}\right)^{1 / 2}=5.9 \%$. The error in an observation of unit weight was as follows: Error $=\left[\Sigma w\left(F_{0}-k F_{c}\right)^{2} /(m-n)\right]^{1 / 2}=1.23$ where $m=$ total number of observations and $n=$ total number of parameters varsed. Throughout the refinement calculations, the atomic seattering curves of Cromer

TABLE 2
POSITIONAL PARAMETERS

Atom	x / a	3/b	$2 / \mathrm{c}$
Co	-017711(6)	$022754(6)$	-018173(7)
O1	-0 2524(4)	01675 (4)	$0.1782(4)$
02	$01172(4)$	$02333(4)$	-0 2976(4)
N1	-0.1493(4)	$01828(4)$	$00675(4)$
N2	$00353(4)$	$02184(4)$	-01684(5)
C1	$01363(5)$	$01878(4)$	$00197(5)$
C 2	$00194(5)$	$01593(4)$	$01694(5)$
C3	$01145{ }^{(2)}$	$02878(5)$	$02287(6)$
C4	$01821(5)$	0 4244(5)	00280 (6)
C5	$0.2819(5)$	$03338(5)$	$00021(6)$
C6	03777 (5)	02744 (6)	$01992(7)$
C7	02788 (6)	0 2467(6)	$03325(6)$
CC1	-0 2331(7)	$03522(7)$	-04811(7)
CCz	-0 2940(7)	$0.1933(7)$	$-04201(7)$
CC.	-04128(6)	$0.1295(6)$	-6 2794(8)
CCA	-0 4259(7)	$02480(8)$	-0 2506(8)
CC5	-0 3152(8)	03886 (6)	-0 3806(9)

[5a] were used The curve for Co included corrections for anomalous dispersion [5b].

Tables 2, 3, and 4, respectively, list the atomic position parameters, anisotropic temperature factors and idealized hydrogen atom positions* Bond lengths and angles are histed in Tables 5 and 6, respectively

TABLE 3
THERMALPARAMETERS ($\times 10^{4}$) ${ }^{\circ}$

Atom	$\boldsymbol{\beta}_{11}$	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Co	$748(9)$	857 (8)	$957(11)$	21.5(6)		
01	$90(5)$	180(6)	$155(7)$	$17(4)$	$\begin{gathered} -11.7(6) \\ 29(5) \end{gathered}$	$\begin{aligned} & -454(7) \\ & -96(5) \end{aligned}$
02	121(5)	199(6)	173(8)	$52(5)$	14(5)	-124(6)
N1	68(5)	93(5)	99(7)	5(4)	8(4)	-46(5)
N2	9085)	79(5)	$113(7)$	19(4)	5(5)	-53(5)
C1	77(6)	$76(5)$	$119(8)$	30(4)	-8(5)	-50(5)
C2	82(6)	76(5)	84(7)	$11(4)$	1 (5)	-31(5)
C3	94(6)	$112(6)$	122(9)	26(5)	-15(6)	-74(6)
C4	93(6)	83(6)	165(9)	18(5)	-2(6)	-66(6)
C5	$76(6)$	96(6)	142(9)	17(5)	2(6)	-65(6)
C6	92(7)	140(7)	210(11)	49(6)	-54(7)	-106(8)
CCl_{1}	$120(7)$ $151(9)$	$139(7)$ $195(10$	157(10)	36(6)	-52(7)	-89(7)
CC2	$161(9)$	209(10)	105(10)	$39(8)$	-31(7)	$-23(8)$
CC3	106(8)	126(8)	202(12) 235(13)	$85(8)$ $0(6)$	-85(8)	-151(10)
CCH_{4}	$142(9)$	316(14)	184(12)	142(10)	-79(8)	-61(8)
CC5	238(12)	134 (8)	268(15)	113(8)	$-156(11)$	-132(11)

[^1][^2]TABLE 4
IDEALIZED HYDROGEN POSITIONS ${ }^{\boldsymbol{c}}$

Atom	x / a	$9 / 6$	z / c
HC1	0183	0101	0056
HC2	-0003	0055	0283
HC3	0047	0303	0303
HC4 1	0092	0454	-0073
HC4 2	0255	0517	0034
HC5	0351	0388	-0.113
HC6	0452	0259	0.223
$\mathrm{HC7}$	0307	0208	0472
HCC1	-0146	0426	-0 579
HCC2	-0258	0137	-0 468
HCC3	-0477	0020	-0211
HCC4	-0 498	0236	-0.157
HCC5	-0 299	0493	-0 398

© All hydrogen atoms were assigned an sotropic thermal parameter of $44 A^{2}$ The C-H distance in all cases was 097 A wach hydrogen atom is labelled according to the carbon atom to which it is attached

TABLE 5
BOND DISTANCES (A)

Co-CC1	2074 (5)	CC1-CC2	$1384(8)$
$\mathrm{Co}-\mathrm{CC2}$	$2085(4)$	CC2-CC3	$1372(7)$
$\mathrm{Ca}-\mathrm{CC3}$	2084 (4)	CC3-CC4	$1388(8)$
Ca-CC4	$2069(5)$	CC4-CC5	1 403(9)
Co-ccs	$2.092(5)$	cc5-cc1	1379 (8)
Co-cen ${ }^{*}$	2714 (5)		
$\mathrm{Co}-\mathrm{N} 1$	$1761(3)$		
$\mathrm{Co}-\mathrm{N} 2$	$1.764(3)$		
N1-O1	$1252(4)$		
N2-02	1 247(4)		
N1-C2	1-492(5)		
$\mathrm{N} 2-\mathrm{Cl}$:1 487(5)		
$\mathrm{C} 1-\mathrm{C} 2$	1520 (5)		
C1-C5	1.551(5)		
C2-C3	1 550(5)		
C3-C4	$1.534(6)$		
C3-C7	$1507(6)$		
C4-C5	$1530(5)$		
C5-C6	1511 (6)		
C6-C7	$1314(7)$		

$a^{\text {cen }} \equiv$ center of cyclopentadienyl ring.

TABLF 6
BOND ANGLES (Deg)

$\mathrm{NL}-\mathrm{CO}-\mathrm{N} 2$	$878(2)$		
$\mathrm{CO}-\mathrm{Ni}-\mathrm{Ol}$	129 4(3)	C1-C5-C4	1007 (3)
Co- ${ }^{\text {Cl-C2 }}$	$1182(2)$	C1-C5-C6	1040 (3)
O1-ヘ1-C2	112 (3)	C4-C5-C6	$1002(3)$
$\mathrm{Co}-\mathrm{V} 2-\mathrm{O} 2$	1289 (3)		
$\mathrm{CO}-\mathrm{M}-\mathrm{Cl}$	118 2(2)	C5-C6-C6	1078 (4)
$\mathrm{O2}-\mathrm{N} 2-\mathrm{Cl}$	$1129(3)$	C3-C7-C6	$1077(4)$
*2-CI-C2	1080 (3)	$\mathrm{CC5}-\mathrm{CC1}-\mathrm{CC} 2$	1089 (5)
N2-C1-C5	112 4(3)	$\mathrm{CCl}^{-\mathrm{CC2}-\mathrm{CC3}}$	1080 (5)
$\mathrm{C2}-\mathrm{Cl}-\mathrm{CS}$	$1036(3)$	CC2-CC3-CC4	108 4(5)
		C.3-C.4-C.5	1077 (5)
-1-C2-C1	1079 (3)	CC4-CC5-CC1	1071(5)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C3}$	$1117(3)$		
$\mathrm{Cl}-\mathrm{C2}-\mathrm{C} 3$	1030 (3)		
C2-C3-C4	$100.1(3)$		
C2-C3-C7	$1055(3)$		
C4-C3-C7	1004 (3)		
C3-C4-C5	936 (3)		
cen ${ }^{\text {a }-\mathrm{Co}-\mathrm{V} 1}$	1377 (3)		
cen-Co- 2	1347 (3)		

a cen = center of cyclopentadienyl ning.

Description of the molecular structure and discussion
Fig 1 shows the shape of the molecule and the atom numbenng system used in the crystallographic study.

Fig 2, a stereographic view depicting the molecule in the same orientation as in Fig. 1, shows that the molecule indeed contains a pair of endo hydrogens at positions 5 and 6 and that the cobalt atom is bridged by a paur of NO fragments to the exo-5,6 positions of the norbomene In the following, we present a quantitative discussion of the molecular bonding parameters of the vanous fragments of the molecule

A The $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ Co fragment
The bonding of the Co atom to the five carbons of the cyclopentadienyl lig-

Fig 2 A stereographic view of the molecule showine the 1 from whotion of she atoms as 505 probabutty elinpoots and showing the hydrogen atom in thetr proper (idetazed) poditans
and is that expected for a normal pentanapto linkage As can be seen from the data in Table 5, the range of values for the Cc-C bonds is narrow (2069(5) to $2092(5) \AA$) and the difference between extreme values ($0023 \AA$) ss , perhaps, just barely significant (32σ) Any significance of this difference is diminished even further when newed against the deviations of the carbon atoms of the cyclo pentadienyl group from the best plane through them, as determined by least squares The deviations range from $+0009 \AA$ to $-0011 \AA$ for CC4 and CC5, respectively, the same two carbon atoms as are involved in the extreme $\mathrm{Co}-\mathrm{C}$ distances A comparison of our results with others obtained from recent hterature reports is given in Table 7, where one can see that there is a range or mean values from $2029(18)$ to $2081(9)$ and that their difference (0052 A) is again barely significant (258σ) In all cases histed in Table 7, the rings are planar and, therefore, have average internal $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles of 108° as expected for a pentagon The values of the C-C distances range from $1385(12)$ to $1417(10) \AA$ but there seems to be no correlation between the variations in $C-C$ distances and those in the Co-C distances In fact, the difference between the extreme values for the $C-C$ distances ($0032 \AA$) is just barely significant (205σ) while the difference between the $C-C$ distances in compounds I and IX, which are stencally closely related, is only $0017 \AA$ which is certainly not significant (066 of

B The norbornene fragment

Beside this study of the norbornene moiety, there are only six others in the structural literature [14-16,24-26] Of these, three [14,24,26] contain norbornene fragments which are a part of larger fused systems. Furthermore, the errors associated with the bond lengths and angles in three of these studies [24-26] are quite large (es d's on lengths $=0018-0030 \AA$, e.s d.'s on angles $=12-20^{\circ}$). Therefore, they are not suitable for comparison with our results However, generally they are in good agreement with the results shown in Table 8. We have included in Table 8 the more accurate results for the polycychic systems [16] wnich are avalable and, for comparison, the results of the electron diffraction study of norbornadıene by Muecke and Davs [17] The skeletons which resemble the title compound most are those of compounds X and XI, which are shown below together with that of XII

TABLE 7
COMPARISON OF BONDING PARAMETERS FOR VARIOUS STRUCTURES CONTAINING THE $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ CO FRAGMENT THE VALUES LISTED BELOW ARE MEAN VALUES AND THE NUMBERS IN PARENTHESES ARE THE DEVIATIONS FROM THE MEAN

	Compound	Co-C (A)	c-c (${ }^{(4)}$	$\mathrm{C}-\mathrm{C}-\mathrm{C}\left({ }^{\text {a }}\right.$)	Reference
1	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CaC}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$	2081 (9)	$1385(12)$	1080 (7)	thes study
11	$\mathrm{Cs}\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{CH}_{7} \mathrm{H}_{8}\right)\right]$	2074 (9)	1415 (14)	1080 (9)	6
111	$2,6-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}-2.6-\mathrm{CO}_{2}-110-\left(\mathrm{C}_{2} \mathrm{~B}_{6} \mathrm{H}_{8}\right)$	2.066(11)	$1417(10)$	$1080(8)$	7
		2.061(11)	1413 (8)	1080 (3)	
IV	$\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CO}_{2}\left(\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{10}\right)_{2}\right]$	2064 (8)	1387 (9)	1080 (8)	8
\mathbf{V}	$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(6.7-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{21}\right.$)	2049 (13)	1.407(2)	108(1)	9
VI	$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}_{0}\left[\mathrm{C}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{SNMe}_{3}\right)_{2}\right]$	2049 (7)	$1389(17)$	1080 (9)	10
VII	$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{42}\right)$	$2038(15)$	1.405(14)	108(2)	11
VIII	$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)$	2.056(10)	1.390(6)	108.0(1)	12
1X	$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left[\mathrm{S}_{2} \mathrm{C}_{2}\left(\mathrm{CNH}_{2} \mathrm{l}\right.\right.$	2.029(18)	1 402(23)	108(2)	13

Tible 8
Comparison of bond lengths (a) and angles (${ }^{\circ}$) within the vorbornene frac OF THE TITLE COMPOUND WITH RELEVANT DATA AVAILABLE IN THE CHEMICAL LITERATURE Bond lengths and angles of ehemueally equivalent fragments are tabulated Atom lat those used in the present crystallographic study Reference should be made to Fig 1 if necessary

Compound		$\mathrm{C3}-\mathrm{C} 7$	C7-C6	$\mathrm{C} 1-\mathrm{C} 5$	$\mathrm{ca}-\mathrm{C} 4$	C1-
1	$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{C}_{7} \mathrm{HgN}_{2} \mathrm{O}_{2}\right)$	1507 (6)	$1314(7)$	$1551(5)$	1 534(6)	152
		1511 (6)		$1550(5)$	$1530(5)$	
x	$\mathrm{C}_{33} \mathrm{H}_{2} \mathrm{Na}_{3} \mathrm{O}_{3}$ (exo)	1 524(14)	$1356(16)$	1 622(11)	$1469(17)$	161
		1541 (15)		$1585(15)$	$1508(13)$	
\I	$\mathrm{CaH}_{8} \mathrm{O}_{3}$ (endo)	$1513(7)$	$1350(7)$	1 566(7)	1 565(7)	154
		$1515(7)$		$1585(7)$	$1547(7)$	
SII	$\mathrm{Ci2}_{2} \mathrm{Hi}_{8} \mathrm{Cl}_{6}$ (exO)	1513 (7)	$1361(\overline{7})$	1580 (6)	$15-43$ (G)	160
		1518 (6)		$1583(6)$	1583 (6)	
XIII	Vorbornadiene ($\mathrm{C}_{7} \mathrm{H}_{8}$)	15.49	1357	-	1568	\rightarrow

(X)

(XI)

The length of the double bond (C7-C6) in the title compound I is shorter than that found for compounds X, XI and XII, the difference being $240 \sigma, 364$ σ, and 475σ, respectively Assuming that the ess of the (CT-C6) bond length measurement in the electron diffraction study is no worse than that for compound $\mathrm{X}(0016 \AA)$, it too differs from I to a level of sigmificance of 246σ At the same time, and to different levels of significance, the length of the single bond ($\mathrm{C} 1-\mathrm{C} 2$) at the fusion point with the five-membered ring is also shorter in I than in all the others. Finally, the lengths of both single bonds (C1-C5 and C2-C3) are shorter in I than in the other compounds These are the only general trends which are apparent in the data of Table 8. For example, the important angle at C4, the bndgehead carbon, is identical in I and XI and smaller than in all the other compounds, including norbornadiene. This result is interesting since the configuration at C 1 and C 2 in I is endo with respect to the hydrogens HC1 and HC 2 and exo with respect to the atoms of the fused five-membered ring The opposite is true in XI. Yet the angle at the bridgehead carbon is larger in X than in XI, where the configuration at C1 and C2 is the same. Along the same lines, one notes that the angles $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$ and $\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$ in I are about the same as those in X but smaller than in the other compounds. Thus, we are forced to conclude that, at this stage, no general trend is apparent for the distances and

$\begin{aligned} & \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3 \\ & \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5 \end{aligned}$	$\begin{aligned} & \mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7 \\ & \mathrm{C} 3-\mathrm{C} 7-\mathrm{C} 6 \end{aligned}$	$\begin{aligned} & \mathrm{C} 2-\mathrm{C3}-\mathrm{C} 7 \\ & \mathrm{C}_{1}-\mathrm{C} 5-\mathrm{C} 6 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{1}-\mathrm{C} 5-\mathrm{C} 4 \\ & \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 \end{aligned}$	$\begin{aligned} & \mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6 \\ & \mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7 \end{aligned}$	C3-C4-C5	Reference
1030 (3)	$1078(4)$	$1055(3)$	1007 (3)	100 2(3)	$93 \mathrm{c}(3)$	this
1036 (3)	$1077(4)$	$10.40(3)$	100.1 (3)	$1004(3)$		studv
$1008(8)$	$1064(9)$	1050 (7)	984 (9)	99 6(7)	990 (8)	14
102 5(6)	1080 (9)	$1052(9)$	985 (7)	1021 (9)		
103 3(5)	107 6(5)	1081 (5)	977 (5)	$1013(5)$	$935(5)$	15
$1032(5)$	$1076(5)$	$1065(5)$	983 (5)	$1010(5)$		
104.9(3)	107 2(4)	1097 (3)	930 (3)	103 2(4)	947 (3)	16
1004 (3)	108 9(4)	107 2(3)	101 6(3)	$1016(3)$		
-	1085	1066	-	959	962	17

angles of the norbornene fragments (molecules) so far studied The same situation exists in the case of the norbornane monety, as has been carefully documented by Sundaralingam and associates [27] However, as a result of the high degree of internal self-consistency, particularly in bond lengths, we feel confident that our description of the norbornene moiety is highly reliable

C The $\mathrm{CoN}_{2} \mathrm{O}_{2} \mathrm{C}_{2}$ fragment

This fragment is interesting because, so far, there are no descriptions in the structural literature for μ-nitroso cobalt derivatives Furthermore, httle is known about ortho dinitroso organic compounds except for the study by Cady, et al. [19] of hexanitrosobenzene, which turned out to be benzotrifuroxan Thus, the molecule contains three five-membered rings (CCNON) fused to the phenyl ring, as shown below XV Note the existence of NO groups acting as bridges to a C and an O

(XV)

A pair of NO bridged ron compounds and three nitroxyl free radicals were also found in the structural hterature. The structural results for these are presented

Fig 3 A stercokraphic packing diagram for the structure

TABLE 9
BOND LENOTIIS (\AA) AND ANGLES (${ }^{\circ}$) OF THF $\mathrm{CaN}_{2} \mathrm{O}_{2} \mathrm{C}_{2}$ FRAGMENT AND COMPAHISONS WITH RILEVANT DATA qVAILABLLIN THI LITV RATURI Brdging NO tragmente are bonded to two atoms, X and Y

[^3]in Table 9 it is clear from Table 9 that there is much danger in attempting to compare structural data obtained for compounds of varying chemical composition and structure However, there is striking internal consistency in the results for the three free radicals Note that as the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle increases from 114 8(5) to $1239(5)$ to $1254(5)^{\circ}$ in XVII, XVIII, and XIX, respectively, the C-N and $\mathrm{N}-\mathrm{O}$ distances also increase There 1 s , at the same time, a decrease in the $\mathrm{C}-\mathrm{N}-\mathrm{O}$ angle which is very promment between XVII and XVIII (or XIX). The lack of a difference in the $\mathrm{C}-\mathrm{N}-\mathrm{O}$ angle between XVIII and XIX is, no doubt, due to the small difference in their $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles However, the variations observed in these compounds are largely self-consistent and sensible

When we compare our results with those found for XIV, we note that the $\mathrm{Co}-\mathrm{N}$ distance is identiral with the $\mathrm{Fe}-\mathrm{N}$ distance and that the two $\mathrm{N}-\mathrm{O}$ distances also agree very well However, there are arastic differences in the values of the $\mathrm{X}-\mathrm{N}-\mathrm{Y}$ angles, the angle at the bridging mitrogen, and the metal- $\mathrm{N}-\mathrm{O}$ and $\mathrm{Y}-\mathrm{N}-\mathrm{O}$ angles If we compare with XV , we note that the $\mathrm{N}-\mathrm{O}$ distances disagree significantly (7σ) even though one of the $\mathrm{Y}-\mathrm{N}$ distances is nearly identical and the various angles listed are in closer agreement than between I and XIV Overall, the various angles at the nitrogen and the $\mathrm{N}-\mathrm{O}$ distance in I resemble most those found in the nitroxyl senes of free radicals Interestingly enough, the $\mathrm{N}-\mathrm{O}$ stretching frequency in I is $1357 \mathrm{~cm}^{-1}$ which is quite close to that found in the nitroxyl senes, viz. $1345 \mathrm{~cm}^{-1}$ [28]. This is a characteristic stretching frequency for these substances The scretching frequency normally associated with bridging NO groups is around $1550 \mathrm{~cm}^{-1}$, as pointed out elsewhere by King [29]. The lowest frequency quoted for a bent nitrosyl group in the very complete and recent review on nitrosyl chemistry [30] is that for [Co$\left.(\text { das })_{2}(N O)(N C S)\right]^{+}($das $=o$-phenylenebis(dimethylarsine)) where $\nu(N O)=1587$ and $1561 \mathrm{~cm}^{-1}$. The metal- $\mathrm{N}-\mathrm{O}$ angle in this compound is $134(2)^{\circ}$, quite close to that in I Thus, the 5,6-dinitrosonorbornene fragment of I behaves structurally and in its stretching frequency characteristics like a nitroxyl free radical

Acknowledgement

This research was performed under the auspices of the US. Energy Research and Development Administration. One of us (G E.) would like to thank the Institute pour L'Encouragement de la Recherche Scientifique dans L'Industrie et L'Agnculture, Belgique for support during his savbatical leave at Brookhaven Another of us (IB.) would like to thank the Chemustry Department of the University of Houston for support during this study We are grateful to Professor Henr Brunner who supplied the crystals

References

1 H. Brunner and S. Loskot, Angew Chem. Int. Ed. 10 (1971) 515
2 D.R. Beaucage, M.A. Kelley, D Ophur, S Rankowitz, R.J Spharad. and R Van Norton Nucl Instrum Stethods, 40 (1966) 26
3 M.S. Lehmarm and F.R. Lamen Acta Crystallogr., A30 (1974) 580
4 P. Coppens, L. Leverouitz, and D. Rabinoulch, Acta Cryitallogr , 18 (1965) 1035
5 (a) D T. Cromer and J. Waber, Intermational Tables for X-Ray Crystallography, Vol IV, Birmungam Kynoch Press, 1974, p 71. (b) D T Cromer, ibid. P 148
6 K.P. Callahan, C E. Surouse, A.L. Sims and M F Hawthorne, Inorg. Chem, 13 (1974) 1397

7 E L Hoel C E Strouse and M F Hawthorne Inorg Chem 13 (1974) 1388
8 G Evrard J.S Ricei Jr I Beral W.J Evans DF Dustin and MF Hawthorne. Chem Commun. (1974) 234

9 KP Callahan. FY Lo CE Strouse AL Sims and M F Hauthorne Inorg Chem 13 (1974) 2842
10 M D Rausch I Bernal, B R Davs, A Siegel $F A$ Higbie and $G F$ Westover J Coord Chem 3 (1973)149

11 M R Churchull and B G DeBoer. Inorg. Chem. 13 (1974) 1411
12 PE Raley and RE Davis pravate communication Tobe submitied to J Organometal Chen
13 M R Churchull and JP Fennessey Inorg Chem. 7 (1968) 1123
14 B Nelson Acta Chem Scand 22 (1968) 518
15 R Destro. G Fhppini CM Gramacciol and Mi Simonetta Acta Crystallogr B25 (1969)2465
16 A A Kahn u H Baur, and MAQ Khan Acta Crystallogr B28 (1972) 2060
17 TW Nuecke and MI Davis Trans Amer Crystallogr Assoc 2 (1966) 173
$18 \mathrm{~J} L$ Caideron S Fontana E Frauendorfer $V W$ Day and S D A Iske J Organometal Cherm. 64 (1974)C16

19 H H Cady A C Larson and D T Cromer Acta Crystallogr 20 (1966) 336
20 KD Karlin $D L$ Lewis H N Rabinowilz and SJ Lappard J Amer Chem Soc 96 (1974) 6519
21 J 4 Turiey and F P Boer Acta Crystallogr B28 (1972) 1641
22 A Copiomont Acta Crystallogr B23 (1972) 2298
23 L.J Beriner, Acta Crystallogr B26 (1970) 1198
24 AC McDonald and J Trotter Act. Crystallogr 18 (1965) 243
25 A C MeDonald and J Trotter, Acta Crystallogr . 19 (1965) 465
26 T Sato M Shuro and H Koyama J Chem Soc B (1968) 935
27 C Altona and 11 Sundaralingam Acta Crystallogr B28 (1972) 1806 Specially the Introduction and the discussion associated with Table 9
28 A K. Hoffmann and ATHenclersun 3 Amer Chem Soc 83 (1961) 4671
29 R B King and MB Bisnette, Inorg Chem 3 (1964) 791
30 J H Enemark and R D Feltham. Coord Chem Rev 13 (1974) 339

[^0]: * Facultes Universitares de Namur, Dept. Chmie rue de Bruxelles 61, B-5000 Namur Belgaque.
 * Department of Chemistry, Suifoik Community Coffege, Selden, New York 11784
 * * Depertment of Chemistry. University of Fiouston. Fouston. Texas 77004.

[^1]: anusotropic temperature fact ors of the form. $T_{1}=\operatorname{expl}-\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33^{2}}+2 \beta_{12} h k+2 \beta_{13} h l+$ $\left.2 \beta_{2} 3^{k l}\right) 1$

[^2]: The table of strueture fictors has been deposited as NAPS Document No 02899 (12 pages) Oriex trom ASIS/NAPS, c/o Mrcrofiche PubHeations, P.O. Box 3513 Grand Central Station, New, York. New York 10017 A copy may be secured by citine the document minner, randitine 500 for photocoples or 53,00 for microtiche. Advance payment E recuiredi Maké chechio payble fo Mifero-

[^3]:
 trée radical containing a puckered alx-membered ($\mathrm{C}_{\varsigma} \mathrm{N}$) ring

